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Abstract—As the machine learning and systems communities
strive to achieve higher energy-efficiency through custom deep
neural network (DNN) accelerators, varied bit precision, and
quantization levels, there is a need for a design space exploration
framework that incorporates quantization-aware processing el-
ements into the accelerator design space while having accurate
and fast power, performance, and area models. In this work,
we present QADAM, a highly parameterized quantization-aware
power, performance, and area modeling framework for DNN
accelerators. Our framework can facilitate the future research on
design space exploration of DNN accelerators for various design
choices such as bit precision, processing element type, scratchpad
sizes of processing elements, global buffer size, device bandwidth,
number of total processing elements in the the design, and DNN
workloads. Our results show that different bit precisions and
processing element types lead to significant differences in terms
of performance per area and energy. Specifically, our proposed
lightweight processing elements achieve on par accuracy results
and up to 5.7× more performance per area and energy improve-
ment when compared to the INT16 based implementation.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
accomplishments across various applications ranging from
image recognition [25], object detection [26], to natural lan-
guage processing [5]. However, the increasing model size and
computational cost of these models become a challenging task
for on-device machine learning (ML) endeavours due to the
stringent performance per area and energy constraints of the
edge devices. To this end, while machine learning practitioners
focus on model compression techniques [3], [6], [9], computer
architects investigate hardware architectures to overcome the
energy-efficiency problem and improve the overall system
performance [12]–[16].

As computing community hits the limits on consistent
performance scaling for traditional architectures, there has
been a rising interest on enabling on-device machine learning
through custom DNN accelerators. As we deeply care about
performance per area and energy-efficiency from a hardware
point of view, tailored DNN accelerators have shown signif-
icant improvements when compared to CPUs and GPUs [2],
[7], [17], [19]. To better understand the trade-offs of various
architectural design choices and DNN workloads, there is a
need for a design space exploration framework that can rapidly
iterate over various designs and generate power, performance,
and area (PPA) results. To this end, in this work we present

Fig. 1. Schematic depicting QADAM framework, with accelerator parameters
and DNN configuration as inputs. The framework takes in accelerator param-
eters and layer-wise DNN configurations and generates power, performance,
area results, and statistics on hardware utilization and memory accesses.

QADAM, a quantization-aware power, performance, and area
modeling framework for DNN accelerators.

This work makes the following contributions:
• We present QADAM, a quantization-aware power, per-

formance, and area modeling framework for DNN ac-
celerators. Our framework can enable future research on
design space exploration of DNN accelerators for various
design choices such as bit precision, processing element
types, scratchpad sizes of processing elements, global
buffer size, device bandwidth, number of total processing
elements in the design, and DNN workloads.

• Our framework provides power, performance, and area
results not just for a single hardware design point but for
a range of different hardware designs as opposed to prior
art [1], [20]. Thus, it can be used to analyze trade-offs of
various architectural design choices and DNN workloads
at the same time to achieve Pareto-optimal design points
in terms of accuracy and hardware-efficiency metrics such
as performance per area and energy.

The rest of the paper is organized as follows. In Section II,
we present a literature review on power and runtime models for
CNNs and design space exploration frameworks for hardware
accelerators. In Section III, we describe the architectural
details of the QADAM framework and the details of our
methodology for power, performance, and area modeling of
DNN accelerators. In Section IV, we show experimental results
demonstrating the efficiency of QADAM’s PPA models and the
efficacy of lightweight processing elements to conventional
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Fig. 2. Different PE types and bit precision lead to significant differences in performance per area and energy. Therefore, there is a need for a design space
exploration framework that incorporates quantization-aware processing elements and rapidly iterate over various designs.

designs in terms of performance per area and energy through
a suite of case studies. Finally, Section V concludes the paper
by summarizing the results.

II. RELATED WORK

Prior art has proposed runtime and energy models for
DNN workloads [1], [20]. However, these models have been
implemented specifically for GPU platforms and thus they
create an important limitation for a design space exploration of
hardware architectures and potentially hardware and machine
learning model co-design opportunities [8], [27], [28]. On
the other hand, systems community has proposed tools and
simulation methodologies for accelerator design. For example,
SCALE-Sim [21] is a cycle accurate, systolic-array based
DNN accelerator simulator. Similarly, Aladdin [22] is a pre-
RTL power and performance accelerator simulator. Although
these tools help to perform preliminary analysis on the design
space for accelerators in different aspects, they do not incor-
porate specialized quantization-aware processing elements and
they do not generate RTL output of the chosen design based
on the input hardware configuration which is an important
impediment for enabling deployment of DNNs onto edge
devices, as the actual deployment of the hardware design takes
significant amount of engineering effort.

III. METHODOLOGY

In this section, we first explain the implementation details
and architectural components of our QADAM framework,
as depicted in Figure 1. Next, we detail the lightweight
processing elements (LightPE) that we implemented in our
framework to provide a specialized processing element (PE)
type for quantized DNN models. Finally, we explain our
power, performance, and area modeling and design space
exploration methodology.

A. QADAM Framework

To enable comprehensive design space exploration for DNN
accelerators for on-device machine learning, we implemented
QADAM, a highly parameterized spatial-array based DNN ac-
celerator framework in RTL. Our framework enables hardware

designers and machine learning practitioners to rapidly iterate
over various accelerator designs and DNN configurations and
better understand trade-offs of different architectural compo-
nents of the design for dizzying requirements of deploying
machine learning models to edge devices. Moreover, hardware
designers can also use the automatically generated RTL code
to follow the design synthesis flow.

As depicted in Figure 1, QADAM framework is based on
spatial-array based accelerators and utilizes row stationary
dataflow which has been demonstrated to optimize the data
movement in the storage hierarchy [2]. QADAM features a set
of processing elements organized as a 2D array and a global
buffer that stores input feature maps, filters, and activations.
The number of PEs in each dimension can be tuned for
different power, performance, and area requirements. In each
PE, there are input feature map, filter, and partial sum scratch-
pads and a multiply-accumulate (MAC) unit which can be
chosen between a conventional MAC unit and a shift-add unit
based on the desired bit precision. Each of these architectural
components can be tuned in a flexible and automated manner
to perform a comprehensive design space exploration for on-
device edge accelerators.

B. Lightweight Processing Elements (LightPE)

To enrich the design space of hardware accelerators and
achieve a better Pareto-frontier in terms of performance per
area and energy-efficiency perspectives, we include LightPE
implementations in our framework. LightPEs utilize 8 bits for
activations and 4 bits and 8 bits for weights for LightPE-1 and
LightPE-2 designs, respectively. As 4 bit and 8 bit quantization
techniques for on-device machine learning became prevalent
in various computing platforms, we provide these specialized
quantization-aware PE types in our QADAM framework to
help hardware designers to enrich their design space and find
better Pareto-frontiers.

Besides their low-precision benefits such as reducing the
storage requirements, LightPEs also replace the multiplications
with more energy and area-efficient one shift or a limited
number of shifts and add operations [6]. Therefore, they also
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Fig. 3. Power (top chart), performance (middle chart), and area (bottom chart) estimation results for various processing element types such as FP32, INT16,
LightPE-1, and LightPE-2. Each data point corresponds to a different hardware configuration that can be achieved by using the corresponding processing
element type. As it can be seen, the proposed polynomial model agrees closely with the actual values extracted from the synthesis tools.

achieve significant power and area gains when compared to
full-precision 32 bit floating point (FP32) and 16 bit integer
(INT16) based designs with only slight accuracy degradation
[6]. As a result, LightPEs provide an enriched design space
for hardware designers and machine learning practitioners to
analyze various trade-offs between accuracy and performance
per area and energy. To this end, Figure 2 shows that different
PE types and precision lead to significant differences in
terms of performance per area and energy. These results also
reinforce the need for a design space exploration framework
that incorporates quantization-aware hardware.

C. Power, Performance, and Area Modeling

To build our quantization-aware power, performance, and
area models, we use various hardware and DNN configura-
tions. Specifically, to cover this comprehensive design space of
hardware accelerators, we run experiments by varying global
buffer size, number of PEs per row and column in the 2D
PE array, bit precision, and PE type (FP32, INT16, LightPE-
1, and LightPE-2). Within each PE, we also vary individual
scratchpad sizes for input feature map, filter, and partial sum.

We use Synopsys Design Compiler and the open-source
FreePDK45 which is a commonly used process design kit
[24] to synthesize our designs to obtain power, area, and
initial timing results. We use Synopsys VCS RTL simulator to
perform functional verification and collect timing information
for various DNN configurations such as VGG-16 [23], ResNet-

20, ResNet-34, ResNet-50, and ResNet-56 [10] that are im-
plemented in our testbenches. After collecting power, area,
and timing results, we use polynomial regression models and
model selection techniques based on k-fold cross validation
[18] to tune the model parameters and fit the model.

IV. RESULTS
In this section, we present power, performance, and area

modeling results for each processing element type and perform
a design space exploration on various DNN models such as
VGG-16 [23], ResNet-20, ResNet-34, ResNet-50, and ResNet-
56 [10] on CIFAR-10, CIFAR-100, and ImageNet datasets to
iterate through our framework to demonstrate the flexibility of
QADAM for future studies.

As detailed in Section III, QADAM framework provides
power, performance, and area models that significantly speed
up the design space exploration. Figure 3 shows the actual
and estimated power, performance, and area results for each
processing element type such as FP32, INT16, LightPE-1, and
LightPE-2. Each data point in Figure 3 corresponds to a differ-
ent hardware accelerator configuration in the comprehensive
design space. As shown by the results, QADAM’s PPA models
achieve high correlation to the actual PPA values. Figure 3
also shows that the FP32 implementation has the highest area
and power cost whereas LightPEs have the lowest area and
power results when one processing element is considered. This
shows the hardware-efficiency of LightPEs when compared to
conventional PE implementations.
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Fig. 4. Normalized performance per area vs. normalized energy results with respect to the INT16 hardware configuration with the highest performance per
area for VGG-16 (left), ResNet-20 (middle), and ResNet-56 (right) for CIFAR-10 (top row), CIFAR-100 (middle row), and ImageNet (bottom row) design
spaces. As it can be seen, LightPEs consistently outperform conventional INT16 and FP32 based designs in various models and datasets, thereby showing the
benefits of using lower precision generalize across a variety of models.

A. Design Space Exploration Results

To show the hardware-efficiency of LightPEs to conven-
tional PE types, we perform design space exploration on
VGG-16 [23], ResNet-20, and ResNet-56 models on CIFAR-
10/CIFAR-100 and VGG-16, ResNet-34, and ResNet-50 [10]
models on ImageNet datasets as shown in Figure 4. We show
the normalized performance per area and normalized energy
results for each PE type with respect to the baseline INT16
based implementation with the highest performance per area
for the given design space.

Figure 4 shows that LightPE implementations consistently
outperform INT16 and FP32 implementations in both aspects,
which proves their efficacy in terms of hardware-efficiency.
Specifically, LightPE-1 and LightPE-2 achieve 4.8× and 4.1×
more performance per area and 4.7× and 4× less energy
on average across all workloads and datasets when compared
to the best INT16 hardware configuration, respectively. On
the other hand, INT16 baseline implementation achieves 1.8×
more performance per area and 1.5× less energy on average
when compared to the best FP32 configuration.

These conclusions hold for all the models and the datasets
considered in this work such as VGG-16, ResNet-20, ResNet-
34, ResNet-50, and ResNet-56 thereby showing that the ben-
efits of using lower precision generalize across a variety of
models. We conclude that different bit precisions and PE
types can lead to significantly different performance per area

and energy results which are two critical metrics for machine
learning and systems community strives to improve upon.

B. Pareto-Optimality for Accuracy and Performance per Area

To show the accuracy and performance per area trade-off
for different processing element types, we perform a Pareto-
front analysis by training VGG-16, ResNet-20, and ResNet-
56 models for CIFAR-10 and CIFAR-100 datasets. For both
datasets, we perform five trials for each DNN model and
processing element type and plot the mean top-1 accuracy
results. The training recipe for both CIFAR-10/CIFAR-100
datasets follows prior art [4], [11] which uses stochastic gra-
dient descent with nesterov momentum, weight decay 0.0005,
batch size 128, 0.1 initial learning rate with decrease by 5× at
epochs 60, 120, and 160, and train for 200 epochs in total. We
note that this training recipe is tuned for full-precision models.
Therefore, the accuracy results for LightPE variants might be
higher with proper hyperparameter tuning.

Figure 5 shows the normalized performance per area and
accuracy results for FP32, INT16, LightPE-1, and LightPE-2.
Performance per area results are normalized with respect to the
best INT16 configuration for each DNN model. We plot the
hardware configurations with the highest performance per area
results for each processing element type. Next, we perform a
Pareto-front analysis among different processing element types
and show the Pareto-frontier with a dashed line for each DNN
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Fig. 5. Normalized performance per area and top-1 accuracy results for various processing element types such as FP32, INT16, LightPE-1, and LightPE-2 for
CIFAR-10 (left chart) and CIFAR-100 (right chart). Each data point corresponds to the hardware configuration with the highest performance per area for the
corresponding processing element type. Pareto-front is shown with a dashed line for each DNN model. LightPEs are consistently on Pareto-front for various
DNN models.

Fig. 6. Normalized energy and top-1 error results for various processing element types such as FP32, INT16, LightPE-1, and LightPE-2 for CIFAR-10
(left chart) and CIFAR-100 (right chart). Each data point corresponds to the hardware configuration with the lowest energy for the corresponding processing
element type. Pareto-front is shown with a dashed line for each DNN model. LightPEs are consistently on Pareto-front for various DNN models.

model. We show that LightPEs are consistently on Pareto-
front for various DNN models and datasets, whereas FP32 and
INT16 based designs are occasionally dominated by LightPE
variants. We show that LightPE-1 and LightPE-2 achieve on
par accuracy results with FP32 and INT16 while achieving up
to 5.7× and 4.9× more performance per area when compared
to INT16 configuration, respectively.

C. Pareto-Optimality for Accuracy and Energy

We also perform a Pareto-front analysis for accuracy and
energy results. We follow the same training methodology
explained in Section IV-B. Figure 6 shows the normalized
energy and accuracy results for FP32, INT16, LightPE-1, and
LightPE-2 based designs. Energy results are normalized with
respect to the best INT16 configuration for each DNN model.
We show that LightPEs are systematically on Pareto-front
for various DNN models and datasets. Specifically, LightPE-1
and LightPE-2 achieve 4.7× and 4× less energy on average
across different workloads and datasets when compared to
INT16 configuration, respectively. We also show that as model
complexity increases, the accuracy gap between LightPEs and
FP32 and INT16 based designs decreases. Thus, we conclude
that our proposed LightPEs have promising results for training

larger models with negligible accuracy loss while achieving
significant performance per area and energy improvements.

V. CONCLUSION

In this work, we present QADAM, a quantization-aware
highly parameterized power, performance, and area modeling
framework for DNN accelerators. Our framework can foster
the future research on design space exploration of DNN
accelerators for various design choices such as bit precision,
processing element type, scratchpad size of processing ele-
ments, global buffer size, device bandwidth, number of total
processing elements in the the design, and DNN workloads.
Our results show that different bit precisions and process-
ing element types lead to significant differences in terms
of performance per area and energy. Specifically, LightPE-
1 and LightPE-2 achieve 4.8× and 4.1× more performance
per area and 4.7× and 4× energy improvement on average
when compared to the best INT16 hardware configuration,
respectively. We also show that our proposed LightPEs con-
sistently achieve Pareto-optimal results in terms of accuracy
and performance per area and energy. Therefore, design space
exploration of quantization-aware DNN accelerators merits a
meticulous analysis that take these factors into account.
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