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I. INTRODUCTION

Over the last decade, the performance boost achieved through
CMOS scaling has plateaued, necessitating sophisticated computer
architecture solutions to gain higher performance in computing sys-
tems while maintaining a feasible power density. These objectives,
however, are concurrently challenged by the limitations of the perfor-
mance of memory resources [1]. In contrast to the initial insight of
Dennard on power density [2], deep CMOS scaling has exacerbated
static power consumption, causing the heat density of ICs to reach
catastrophic levels unless properly addressed [3].

As computers suffer from memory and power related limitations,
the demand for data-intensive applications has been on the rise. With
the increasing data deluge and recent improvements in GPU architec-
tures, deep neural networks (DNNs) have achieved remarkable suc-
cess in various tasks such as image recognition and object detection
by utilizing inherent massive parallelism of GPU platforms. However,
DNN workloads continue to have large memory footprints and signif-
icant computational requirements to achieve higher accuracy. Thus,
DNN workloads exacerbate the memory bottleneck which degrades
the overall performance of the system. To this end, while deep
learning (DL) practitioners focus on model compression techniques
[4], system architects investigate GPU architectures to overcome
the memory bottleneck problem and improve the overall system
performance [5]. We note the current trend of GPU architectures
is towards increasing last-level cache capacity. Our analysis shows
that conventional SRAM technology incurs scalability problems as
far as power, performance, and area (PPA) is concerned [6]. Non-
volatile memory (NVM) technology is one of the most promising
solutions to tackle memory bottleneck problem for data-intensive
applications. However, because much of emerging NVM technology
is not available for commercial use, there is an obvious need for a
framework to perform design space exploration for these emerging
NVM technologies for DL workloads.

In this work, we present DeepNVM++ [7], an extended and
improved framework [8] to characterize, model, and optimize NVM-
based caches in GPU architectures for deep learning workloads.
Without loss of generality, we demonstrate our framework for spin-
transfer torque magnetic random access memory (STT-MRAM) and
spin-orbit torque magnetic random access memory (SOT-MRAM),
keeping in mind that it can be used for any NVM technology,
GPU platform, or deep learning workload. Our cross-layer analysis
framework incorporates both circuit-level characterization aspects
and the memory behavior of various DL workloads running on an
actual GPU platform. DeepNVM++ enables the evaluation of power,
performance, and area of NVMs when used for last-level (L2) caches
in GPUs and seeks to exploit the benefits of this emerging technology
to improve the performance of deep learning applications.

We present both iso-capacity and iso-area performance and energy
analysis for systems whose last-level caches rely on conventional
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SRAM and emerging STT-MRAM and SOT-MRAM technologies.
To perform iso-capacity analysis, we carry out extensive memory
profiling of various deep learning workloads for both training and
inference on existing GPU platforms. For the iso-area analysis,
existing platforms cannot be used for varying cache sizes, so we
rely on architecture-level simulation of GPUs to quantify and better
understand last-level cache capacity and off-chip memory accesses. In
both cases, our framework automatically combines resulting memory
statistics with circuit and microarchitecture-level characterization and
analysis of emerging NVM technologies to gauge their impact on DL
workloads running on future GPU-based platforms.

We also perform a scalability analysis and compare SRAM, STT-
MRAM, and SOT-MRAM for various cache capacities in terms of
area, latency, and energy results. Next, we evaluate and show how
NVM-based caches behave in terms of performance and energy when
compared to conventional SRAM-based caches for DL workloads in
a scalability analysis. Our comprehensive cross-layer framework is
demonstrated on STT-/SOT-MRAM technologies and can be used for
the characterization, modeling, and analysis of any NVM technology
for last-level caches in GPUs for DL applications.

II. RELATED WORK AND PAPER CONTRIBUTIONS

Although 16nm has become a commonplace technology for high-
end customers of foundries, an intriguing inflection point awaits the
electronics community as we approach the end of the traditional
density, power, and performance benefits of CMOS scaling. To move
beyond the computing limitations imposed by staggering CMOS
scaling trends, MRAM has emerged as a promising candidate.



STT bitcells [9] use a magnetic tunnel junction (MTJ) pillar as their
core storage element and an additional access transistor to enable read
and write operations. Although STT bitcells offer non-volatility, low
read latency, and high endurance, the write current is also high, which
increases power consumption. To this end, SOT bitcells have been
proposed to overcome the write current challenges by isolating the
read and write paths. Because the read disturbance errors are much
less likely in SOT bitcells, both read and write access devices can be
tuned in accordance with the lower current requirements. The read
and write current requirements of STT and SOT bitcells can have a
crucial impact on the eventual MRAM characteristics because they
affect the CMOS access transistors, bitcell area, and peripheral logic.
Thus, a comparison of these bitcells and the traditional SRAM merits
a meticulous analysis that take these factors into account.

Prior work has proposed effective approaches to overcome the
shortcomings of emerging NVM technologies such as using hybrid
SRAM and NVM-based caches that utilize the complementary fea-
tures of different memory technologies, relaxing non-volatility prop-
erties to reduce the high write latency and energy, and implementing
cache replacement policies for higher level caches such as L1 caches
and register files. However, NVM technology appear to be a better
choice for lower level caches such as L2 or L3 caches due to its
long write latency and high cell density. Higher level L1 caches
are latency-sensitive and optimized for performance, whereas last-
level caches are capacity-sensitive and optimized for a high hit rate
to reduce off-chip memory accesses. Therefore, NVM-based caches
provide a better use case for replacing SRAM in last-level caches due
to their high cell density when compared to SRAM-based caches.
To this end, we evaluate power, performance, and area of NVM
technology when used for last-level caches in GPU platforms.

While prior work has shown the potential of NVM technologies for
generic applications to some extent, there is a need for a cross-layer
analysis framework to explore the potential of NVM technologies in
GPU platforms, particularly for DL workloads. The most commonly
used modeling tool for emerging NVM technologies is NVSim [10],
a circuit-level model for performance, energy, and area estimation.
However, NVSim is not sufficient to perform a detailed cross-layer
analysis for NVM technologies for DL workloads since it does
not take architecture-level analysis and application-specific memory
behavior into account. In this paper, we incorporate NVSim with
our cross-layer modeling and optimization flow including novel
architecture-level iso-capacity and iso-area analysis flow to perform
design space exploration for conventional SRAM and emerging
NVM caches for DL workloads. This paper makes the following
contributions:

1) Circuit-level bitcell characterization. We perform detailed
circuit-level characterization combining a commercial 16nm
CMOS technology and prominent STT [9] and SOT [11]
models from the literature to iterate through our framework
in an end-to-end manner to demonstrate the flexibility of
DeepNVM++ for future studies.

2) Microarchitecture-level cache design exploration. We use
NVSim [10] to perform a fair comparison between SRAM, STT-
MRAM, and SOT-MRAM by incorporating the circuit-level
models developed in 1) using 16nm technology and choosing
the best cache configuration for each of them.

3) Iso-capacity analysis. To compare the efficacy of MRAM
caches to conventional SRAM caches, we perform our novel
iso-capacity analysis based on actual platform profiling results
for the memory behavior of various DNNs by using the Caffe
framework on an NVIDIA 1080 Ti GPU (implemented in 16nm

technology) for the ImageNet dataset.
4) Iso-area analysis. Because of their different densities, we

compare SRAM and NVM caches in an iso-area analysis to
quantify the benefits of higher density of NVM technologies
on DL workloads running on GPU platforms. Since existing
platforms do not support resulting iso-area cache sizes, we
extend the GPGPU-Sim [12] to run DL workloads and support
larger cache capacities for STT-MRAM and SOT-MRAM.

5) Scalability analysis. Finally, we perform a thorough scalability
analysis and compare SRAM, STT-MRAM, and SOT-MRAM
in terms of power, performance, and area to project and
gauge the efficacy of NVM and SRAM-based caches for DL
workloads as cache capacity increases.

To the best of our knowledge, putting everything together, Deep-
NVM++ is the first comprehensive framework for cross-layer charac-
terization, modeling, and analysis of emerging NVM technologies for
deep learning workloads running on GPU platforms. Our results show
that in the iso-capacity case, STT-MRAM and SOT-MRAM achieve
up to 3.8× and 4.7× energy-delay product reduction and 2.4× and
2.8× area reduction compared to SRAM baseline, respectively. In
the iso-area case, STT-MRAM and SOT-MRAM achieve up to 2×
and 2.3× energy-delay product reduction and accommodate 2.3×
and 3.3× cache capacity compared to SRAM, respectively. We also
perform a scalability analysis and show that STT-MRAM and SOT-
MRAM achieve orders of magnitude EDP reduction when compared
to SRAM for large cache capacities. Our novel framework can be
used to further explore the feasibility of emerging NVM technologies
for DL applications for different design choices such as technology
nodes, bitcell models, DL workloads, cache configurations, optimiza-
tion targets, and target platforms.
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